Luận văn Gần đúng eikonal cho biên độ tán xạ thế và phương pháp tích phân phiếm hàm trong cơ học lượng tử
Bạn đang xem 30 trang mẫu của tài liệu "Luận văn Gần đúng eikonal cho biên độ tán xạ thế và phương pháp tích phân phiếm hàm trong cơ học lượng tử", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
luan_van_gan_dung_eikonal_cho_bien_do_tan_xa_the_va_phuong_p.pdf
Nội dung tài liệu: Luận văn Gần đúng eikonal cho biên độ tán xạ thế và phương pháp tích phân phiếm hàm trong cơ học lượng tử
- ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN --------------------- NGUYỄN THỊ HẢI YẾN GẦN ĐÚNG EIKONAL CHO BIÊN ĐỘ TÁN XẠ THẾ VÀ PHƢƠNG PHÁP TÍCH PHÂN PHIẾM HÀM TRONG CƠ HỌC LƢỢNG TỬ LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội – 2016
- ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN --------------------- NGUYỄN THỊ HẢI YẾN GẦN ĐÚNG EIKONAL CHO BIÊN ĐỘ TÁN XẠ THẾ VÀ PHƢƠNG PHÁP TÍCH PHÂN PHIẾM HÀM TRONG CƠ LƢỢNG TỬ Chuyên ngành: Vật lý Lý thuyết và Vật lý Toán Mã số: 60.44.01.03 LUẬN VĂN THẠC SĨ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: TS. CAO THỊ VI BA Hà Nội – 2016
- LỜI CẢM ƠN Đầu tiên, tôi xin gửi lời cảm ơn chân thành và sâu sắc tớiTS.Cao ThịVi Ba,người đã tận tình hướng dẫn, đóng góp những ý kiến quý báu cho tôi trong suốt quá trình thực hiện luận văn. Tôi xin gửi lời cảm ơn tới Ban Giám hiệu, Khoa Vật lý và phòng Sau đại học của Trường Đại học Khoa học Tự nhiên – Đại học Quốc gia Hà Nội, đã tạo điều kiện tốt nhất cho tôi hoàn thành luận văn này. Tôi xin gửi lời cảm ơn tới các thầy cô và toàn thể cán bộ bộ môn Vật lý lý thuyết, khoa Vật lý của Trường Đại học Khoa học Tự nhiên – Đại học Quốc gia Hà Nội, những người đã luôn tận tình dạy bảo, giúp đỡ và động viên tôi. Cuối cùng, tôi xin gửi lời cảm ơn những người thân trong gia đình, bạn bè và đồng nghiệp đã động viên cho tôi hoàn thành luận văn này. Do thời gian và kiến thức còn nhiều hạn chế nên không thể tránh khỏi những thiếu sót, rất mong nhận được sự chỉ bảo, góp ý của quý thầy cô và các bạn. Một lần nữa, tôi xin chân thành cảm ơn! Hà Nội, ngày 20 tháng 9 năm 2016 Học viên Nguyễn Thị Hải Yến
- MỤC LỤC Mở đầu ...1 Chuơng 1. Gần đúng eikonal cho bài toán tán xạ .4 1.1. Gần đúng eikonal trong quang học .. ..................4 1.2. Phát biểu bài toán tán xạ . ...8 1.3. Lời giải phương trình Schrodinger . .14 Chƣơng 2. Công thức eikonal và phƣơng pháp tích phân phiếm hàm . 25 2.1. Hàm Green của hạt cho phương trình Schrodinger ở trường ngoài ...25 2.2. Biên độ tán xạ và gần đúng quỹ đạo thẳng ..........................30 Chƣơng 3. Tán xạ trên thế ngoài cụ thể ................41 3.1.ThếYukawa .. ...................41 3.2. Thế Gauss ...45 Kết luận ... .50 Tài liệu tham khảo ...52 Phụ lục ... ..54
- MỞ ĐẦU Biểu diễn eikonal cho biên độ tán xạ góc nhỏ được đề xuất lần đầu tiên vào năm 1959 trong cơ học lượng tử phi tương đối tính, đã được sử dụng rộng rãi để phân tích các số liệu thực nghiệm về tán xạ các hạt với năng lượng cao [10].Biểu diễn eikonal này có thể thu được bằng ba phương pháp khác nhau: phương pháp sóng riêng phần (tìm hàm sóng ở xa vô cùng), phương pháp hàm Green (giải phương trình vi tích phân) và phương pháp chuẩn cổ điển (giải phương trình Schrodinger bằng gần đúng chuẩn cổ điển) [3].Các phương pháp này nói chung dựa vào lý thuyết nhiễu loạn và khó sử dụng trong lý thuyết trường lượng tử. Chính vì vậy, trong luận văn này chúng tôi muốn giới thiệu một phương pháp mới, đó là phương pháp tích phân phiếm hàm cho bài toán tán xạ trong cơ học lượng tử phi tương đối tínhkhông dựa vào lý thuyết nhiễu loạn[9]. Trong vùng tương đối tính và năng lượng cao, việc tổng quát hoá gần đúng eikonaltrên cơ sở một lý thuyết chặt chẽ là một bài toán khá lý thú của lý thuyết trường lượng tử.Cơ học lượng tử phi tương đối tính là lý thuyết đơn giản nhất mà trong khuôn khổ của nó với giả thiết tính nhẵn của thế năng, đã thành công trong việc giải thích vật lý những đặc trưng cơ bản tán xạ năng lượng cao của các hadron. Do mô hình quang học và phép gần đúng eikonal liên quan đến phép gần đúng tổng quát hơn là phép gần đúng chuẩn cổ điển trong cơ học lượng tử nên lý thuyết tán xạ thế cho ta cơ sở để đưa vào Vật lý hiện đại phép gần đúng eikonal hay gần đúng quang học. Ở đây, chúng tôi trình bày vắn tắt các kết quả vận dụng phương pháp chuẩn cổ điển hay còn gọi là phương pháp WKB cho bài toán tán xạ năng lượng cao. Phương pháp WKB được hiểu là phép gần đúng mà theo nó pha tán xạ tỷ lệ với hàm tác dụng cổ điển. Phép khai triển theo sóng riêng phần là một phương pháp chủ yếu để nghiên cứu tán xạ năng lượng cao, song năng lượng hạt càng cao thì ta phải tính một số lượng khổng lồ 1
- sóng riêng phần thì phương pháp này trở nên kém hiệu quả. Vì vậy, người ta phải đề xuất các cách tiếp cận khác để nghiên cứu bài toán tán xạ năng lượng cao của các hạt cơ bản. Một trong các cách tiếp cận khác đơn giản hơn và rõ ràng về mặt vật lý chính là biểu diễn eikonal hay biểu diễn Glauber cho biên độ tán xạ[3]. Lưu ý, biểu diễn eikonal cho biên độ tán xạ góc nhỏ đã được sử dụng rộng rãi để phân tích các số liệu thực nghiệm về tán xạ các hạt với năng lượng cao. Mục đích của luận văn nhằm nghiên cứu gần đúng eikonal cho bài toán tán xạ năng lượng cao ở trường ngoài bằng phương pháp tích phân phiếm hàm trong cơ học lượng tử. Luận văn gồm các phần:Mở đầu, Nội dung nghiên cứu được viết thành ba chương, Kết luận, Tài liệu tham khảo và Phụ lục. Phần nội dung của luận văn gồm: Chƣơng 1.Gần đúng eikonal cho bài toán tán xạ thế ngoài. Mục 1.1:Giới thiệu vắn tắt gần đúng eikonal được sử dụng trong quang học. Mục 1.2: Phát biểubài toán tán xạ trong cơ học lượng tử. Mục 1.3: Lời giải phương trình Schrodinger dừng với thế ngoài ở xa vô cùng, từ đó rút ra công thức eikonal hay công thức Glauber cho biên độ tán xạ. Chƣơng 2.Công thức eikonal và phƣơng pháp tích phân phiếm hàm. Trong chương này, chúng ta rút ra công thức eikonal cho biên độ tán xạ bằngphương pháp tích phân phiếm hàm trong cơ học lượng tử. Mục 2.1: Giới thiệu biểu diễn hàm Green của hạt cho phương trình Schrodinger ở thế ngoài dưới dạng tích phân phiếm hàm. Mục 2.2: Tách các cực điểm từ hàm Green của hạt ở trường ngoài để thu được biên độ tán xạ thế.Trong mục này, giới thiệu cách tính gần đúng tích phân phiếm hàm bằng gần đúng quỹ đạo thẳng và khảo sát dáng điệu tiệm cận của 2
- biên độ tán xạ thế ở vùng năng lượng cao và góc tán xạ nhỏ. Điều kiện sử dụng gần đúng này được thảo luận từ những giới hạn lênthế năng, năng lượng của hạt và góc tán xạ. Chƣơng 3.Tán xạ trên thế ngoài cụ thể. Sử dụng công thức eikonal thuđược hai chương trên cho một số thế ngoài cụ thể. Mục 3.1: Nghiên cứu tán xạ thế Yukawa. Mục 3.2: Nghiên cứu tán xạ thế Gauss. Phần kết luận: Tóm tắt các kết quả thu được trong luận văn và thảo luận những hướng nghiên cứu tiếp theo trong thời gian tới. Trongluậnvăn, chúng tôi sử dụng hệ đơn vị nguyên tử c 1 và metric Feynman. Vớivéctơ tọa độ phản biến là x xtxxx0 ,,,, 1 2 yx 3 z tx thì các véctơ tọa độ hiệp biến là xgx xtx0 ,,,, 1 xx 2 yx 3 z tx , trong đótensor metric có dạng 1 0 0 0 0 1 0 0 gg 0 0 1 0 0 0 0 1 Chƣơng 1 GẦN ĐÚNG EIKONAL CHO BÀI TOÁN TÁN XẠ[4] 3
- 1.1. Gần đúng eikonal trong quang học Trong phần này, chúng tôi giới thiệu gần đúng eikonal trong quang học. Phương trình mô tả việc truyền sóng ánh sáng trong môi trường có chiết suất n mà trong trường hợp tổng quát là hàm số của tọa độ nr và có dạng n22 0 ,(1.1) ct22 ở đây là thành phần bất kỳ của các vectơ E và H . Nếu n là không đổi thì nghiệm riêng của phương trình (1.1) là sóng phẳng đơn sắc i kr t 0e .(1.2) Số sóng kk , tần số và bước sóng liên hệ với nhau bằng hệ thức 2 kn . (1.3) c Giả thiết rằng,phương truyền sóng và biên độ của sóng phẳng trong toàn không gian là không đổi. Nếu môi trường không đồng nhất thì sẽ là hàm của tọa độ và sóng phẳng (1.2) với vectơ sóng (1.3) sẽ không thỏa mãn phương trình (1.1). Tuy nhiên, nếu bước sóng nhỏ hơn nhiều khoảng cách đặc trưng d , mà ở đó chiết suất thay đổi đáng kể, thì ở khoảng cách nhỏ đó sóng ánh sáng vẫn được coi là sóng phẳng truyền theo hướng vuông góc với mặt sóng. Các hướng như vậy được gọi là tia. 4
- Chúng ta tìm nghiệm của phương trình (1.1) trong trường hợp này dưới dạng aei . (1.4) Ở những khoảng cách nhỏ của không-thời gian, hàm được gọi là eikonal. Ta có thể khai triển nó thành chuỗi rt . (1.5) 0 t Vì ở những khoảng cách nhỏ của tương tác thế giới vi mô, có thể coi là sóng phẳng nên so sánh (1.5) và (1.4) với (1.2) chúng ta tìm được k , . (1.6) t Thay (1.4) vào (1.1) ta được n22 (aeii ) ( ae ) 0, (1.7) ct22 trong đó (aeii ) ( ( ae )) () aeii iae 22aei aie i i ae i iae i i iae i (1.8) 2 2 2 i a 2 i a ia a ( ) e Tương tự ta có 2 2 2 2 ii aa 2 ae 2 2 i ia 2 a e (1.9) t t t t t t Thế (1.8) và (1.9) vào (1.7) ta được 5
- 2 222 2 nr aa Δa i 2 a ia Δ a 2 2 2 i ia 2 a 0.(1.10) c t t t t t Phương trình (1.10) là phương trình chính xác, hoàn toàn tương đương với phương trình (1.1). Giả thiết rằng a và là các hàm biến đổi chậm của tọa độ và thời gian, bỏ qua các số 2a 2 a hạng chứa Δa , Δ , a. , , , trong (1.10), chúng ta thu được phương t 2 t 2 t t trình eikonal cho 2 2 2 nr . (1.11) ct Thay (1.6) vào (1.11) ta được 2 2 nr .(1.12) c Các phương trình (1.11) và (1.12) được gọi là các phương trình eikonal. Như vậy, trong gần đúng eikonal các mặt sóng là các mặt r,, t const (1.13) còn các tia được hướng theo k . Lưu ý sự tương tự ở đây, giữa các phương trình eikonal (1.11) và (1.12) với phương trình Hamilton-Jacobi, mà trong cơ học cổ điển mô tả chuyển động của hạt trong 6