Luận văn Nghiên cứu điều khiển khe năng lượng của graphene sử dụng cấu trúc lai armchair - Zigzag

pdf 76 trang Khánh Chi 17/04/2025 150
Bạn đang xem 30 trang mẫu của tài liệu "Luận văn Nghiên cứu điều khiển khe năng lượng của graphene sử dụng cấu trúc lai armchair - Zigzag", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • pdfluan_van_nghien_cuu_dieu_khien_khe_nang_luong_cua_graphene_s.pdf

Nội dung tài liệu: Luận văn Nghiên cứu điều khiển khe năng lượng của graphene sử dụng cấu trúc lai armchair - Zigzag

  1. ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN --------------------- NGUYỄN THỊ LEN NGHIÊN CỨU ĐIỀU KHIỂN KHE NĂNG LƢỢNG CỦA GRAPHENE SỬ DỤNG CẤU TRÚC LAI ARMCHAIR – ZIGZAG LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội – Năm 2017
  2. ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN --------------------- NGUYỄN THỊ LEN NGHIÊN CỨU ĐIỀU KHIỂN KHE NĂNG LƢỢNG CỦA GRAPHENE SỬ DỤNG CẤU TRÚC LAI ARMCHAIR – ZIGZAG Chuyên ngành: Vật Lý Mã số: 60.44.01.04 LUẬN VĂN THẠC SĨ KHOA HỌC Người hướng dẫn khoa học: T.S. NGUYỄN TIẾN CƢỜNG Hà Nội – Năm 2017
  3. LỜI CẢM ƠN Đầu tiên tôi xin được bày tỏ sự kính trọng và biết ơn sâu sắc đến T.S Nguyễn Tiến Cường, người đã tận tình hướng dẫn, giúp đỡ và cung cấp tài liệu thông tin khoa học cần thiết để tôi có thể hoàn thành được luận văn. Tiếp đến, tôi xin được gửi lời cảm ơn chân thành đến thầy Kazunori Sato, cùng toàn thể các thành viên trong phòng nghiên cứu Kakeshita, đã hướng dẫn, giúp đỡ tôi trong suốt quá trình học tập và nghiên cứu tại Đại học Osaka, Nhật Bản. Tôi cũng xin được gửi lời cảm ơn sâu sắc đến Ban lãnh đạo trường, các Thầy Cô khoa Vật Lý, đặc biệt là các Thầy Cô trong bộ môn Vật Lý Chất Rắn, cũng như Tin – Vật Lý, Phòng sau Đại học trường Đại học Khoa học Tự nhiên - ĐHQG HN đã hỗ trợ, tạo điều kiện thuận lợi nhất để tôi có thể tham gia nghiên cứu và thực hiện luận văn. Cuối cùng tôi muốn gửi lời cảm ơn đến gia đình và bạn bè, những người luôn kịp thời động viên và giúp đỡ tôi vượt qua những khó khăn trong cuộc sống, một phần không thể thiếu để có thể hoàn thành luận văn này. Mặc dù tôi đã rất cố gắng để hoàn thành luận văn, nhưng do hạn chế về thời gian, kinh nghiệm và kiến thức nên không tránh khỏi những thiếu sót. Tôi mong nhận được sự thông cảm và những ý kiến đóng góp từ các thầy cô, anh chị và các bạn để tôi có điều kiện bổ sung, nâng cao kiến thức của mình. Tôi xin chân thành cảm ơn! Hà Nội, tháng 06 năm 2017 Học viên Nguyễn Thị Len
  4. MỤC LỤC Mở đầu .............................................................................................................................................. 1 CHƢƠNG I: TỔNG QUAN VỀ GRAPHENE .............................................................................. 4 1.1. Giới thiệu về Graphene ...................................................................................................... 4 1.1.1. Graphene .................................................................................................................... 4 1.1.2. Một số tính chất vật lý của Graphene ........................................................................ 5 1.1.3. Graphene Nanoribbons và cấu trúc lai Armchair – Zigzag ..................................... 11 1.1.4. Ứng dụng của Graphene .......................................................................................... 13 1.2. Vấn đề mở khe năng lượng của Graphene ....................................................................... 17 CHƢƠNG II: TỔNG QUAN VỀ PHƢƠNG PHÁP NGHIÊN CỨU ........................................ 20 2.1. Bài toán hệ nhiều hạt ............................................................................................................. 20 2.1.1. Phương trình Schrodinger ............................................................................................. 20 2.1.2. Gần đúng Born-Oppenheimer ........................................................................................ 21 2.2. Nguyên lý biến phân cho trạng thái cơ bản ........................................................................... 21 2.3. Phương pháp xấp xỉ Hartree – Fock ...................................................................................... 22 2.4. Phương pháp phiếm hàm mật độ ........................................................................................... 25 2.4.1. Mật độ electron .............................................................................................................. 25 2.4.2. Mô hình Thomas – Fermi ............................................................................................... 26 2.4.3. Lý thuyết của Hohenberg – Kohn ................................................................................... 26 2.4.4. Phương trình Kohn – Sham ............................................................................................ 30 2.5. Phiếm hàm tương quan trao đổi ............................................................................................ 32 2.5.1. Gần đúng mật độ địa phương (LDA) ............................................................................. 32 2.5.2. Gần đúng Gradient suy rộng (GGA) .............................................................................. 34 2.6. Phương pháp hàm Green không cân bằng ............................................................................. 34 2.6.1. Các hàm Green .............................................................................................................. 34 2.6.2. Các hàm Green không cân bằng .................................................................................... 35 2.7. Kết hợp giữa phương pháp phiếm hàm mật độ và hàm Green không cân bằng ................... 36 2.8. Mô hình tính toán .................................................................................................................. 37 2.9. Phần mềm OpenMX .............................................................................................................. 39 CHƢƠNG III: KẾT QUẢ VÀ THẢO LUẬN ............................................................................. 40 3.1. Tối ưu hóa tham số ........................................................................................................... 40
  5. 3.2. Hệ Graphene dạng dải ........................................................................................................... 42 3.2.1. Graphene dạng dải Zigzag với N = 8 (8ZGNRs) ........................................................... 42 3.2.2. Graphene dạng dải Armchair ........................................................................................ 44 3.2.3. Ảnh hưởng của biến dạng cơ học lên tính chất điện tử của AGNR................................ 47 3.3. Graphene có cấu trúc dạng góc 90 độ ................................................................................... 49 3.3.1. Graphene có cấu trúc dạng góc 90 độ ........................................................................... 49 3.3.2. Ảnh hưởng có biến dạng cơ học lên tính chất điện tử của Graphene cấu trúc dạng góc 90 độ ......................................................................................................................................... 51 3.3.3. Graphene có cấu trúc dạng chữ U ................................................................................. 51 3.4. Graphene có cấu trúc dạng đục lỗ. ........................................................................................ 53 3.4.1. ZGRNs có đục lỗ ............................................................................................................ 53 3.4.2. AGRNs có đục lỗ ............................................................................................................ 57 KẾT LUẬN ..................................................................................................................................... 59 TÀI LIỆU THAM KHẢO ............................................................................................................. 61
  6. DANH MỤC BẢNG BIỂU Bảng 1.1: So sánh một số tính chất nổi bật giữa Graphene và Silicon ......................... 10 Bảng 3.1: Kết quả sự phụ thuộc năng lượng vào bán kính cutoff và C – C bonding ... 41 Bảng 3.2: Kết quả sự phụ thuộc năng lượng vào basis set ........................................... 41 Bảng 3.3: Kết quả sự phụ thuộc năng lượng vào năng lượng cutoff DFFT ............ 41 Bảng 3.4: Kết quả sự phụ thuộc năng lượng vào năng lượng cutoff SCF ................. 42 Bảng 3.5: Các thông số tối ưu cho các tính toán đối với Graphene ............................ 42 Bảng 3.6: Sự phụ thuộc giá trị khe năng lượng của hệ N-AGNRs vào chiều rộng của dải ........................................................................................................................... 46
  7. DANH MỤC HÌNH VẼ Hình 1.1: Mạng lưới Graphene .................................................................................... 4 Hình 1.2: Mô hình 2D của grapheme ......................................................................... . 5 Hình 1.3: Năng lượng E cho các trạng thái kích thích trong Graphene là một hàm của số sóng kx và ky trong các chiều x và y ................................................................... 7 Hình 1.4: Các orbital lai hóa sp2 trong nguyên tử Carbon ........................................... 8 Hình 1.5: Các liên kết của mỗi nguyên tử Carbon trong mạng Graphene ................... 9 Hình 1.6: Một ô mạng của Graphene và mô hình lưới Graphene. Sức bền của Graphene ....................................................................................................................... 9 Hình 1.7: Phân loại ZGNRs hoặc AGNRs dựa trên cấu trúc của các cạnh (trái) và độ rộng của dải Graphene được đặc trưng bởi số hàng N (phải) .................................. 11 Hình 1.8: Cấu trúc năng lượng ứng với AGNRs có độ rộng N=4 (bán dẫn), N=5 (mang tính kim loại) và N=6 (mang tính bán dẫn) ............................................... 12 Hình 1.9: Cấu trúc năng lượng ứng với AGNRs có độ rộng N = 6, N = 7, N = 8 ....... 12 Hình 1.10: Cấu trúc năng lượng ứng với ZGNRs có độ rộng N = 4, N = 5, N = 6 đều mang tính kim loại ................................................................................................. 13 Hình 1.11: Cấu tạo của OLED có sử dụng Graphene làm lớp điện cực trong suốt ..... 14 Hình 1.12: Độ nhạy của Graphene đối với các chất pha tạp hóa học .......................... 15 Hình 1.13: Các đặc tính truyền của một bi-layer Graphene FET ở các nhiệt độ khác nhau ............................................................................................................................... 18
  8. Hình 1.14: Cấu trúc vùng theo các tính toán dựa vào nguyên lý ban đầu đối với Na – AGNRs với Na = 12, 13 và 14 ................................................................................... 19 Hình 2.1: Đường Keldysh ............................................................................................ 36 Hình 2.2: (a) Mô hình của hình hệ tính toán sử dụng phương pháp các hàm Green không cân bằng. (b) Hệ một chiều xuất phát từ mô hình ở hình (a). (c) Mô hình cấu trúc của 8-ZGNRs được chia làm ba phần L-R-C ........................................................ 37 Hình 3.1: Mô phỏng hệ kênh dẫn hệ 8 – ZGNRs ......................................................... 42 Hình 3.2: Mật độ trạng thái và cấu trúc vùng năng lượng của hệ 8 – ZGNRs ............ 43 Hình 3.3: Phổ truyền electron của hệ 8 – ZGNRs ........................................................ 44 Hình 3.4: Mô phỏng hệ kênh dẫn đối với hệ 7 – AGNRs ............................................ 44 Hình 3.5: Mật độ trạng thái và cấu trúc vùng năng lượng của 7 – AGNRs ................. 45 Hình 3.6: Phổ truyền electron của hệ 7 – AGNRs ....................................................... 46 Hình 3.7: Sự phụ thuộc giá trị khe năng lượng của hệ N – AGNRs vào chiều rộng của dải ........................................................................................................................... 46 Hình 3.8: Phổ truyển electron của các hệ N – AGNRs tương ứng với N = 6, 7, 8, 9, 10 ................................................................................................................................... 47 Hình 3.9: Sự ảnh hưởng của biến dạng cơ học lên giá trị khe năng lượng của hệ 7 – AGNRs .......................................................................................................................... 48 Hình 3.10: Phổ truyền electron của hệ 7 – AGNRs dưới ảnh hưởng của các biến dạng cơ học ................................................................................................................... 48 Hình 3.11: Mô hình hệ các kênh dẫn đối với Graphene dạng góc vuông .................... 50 Hình 3.12: Phổ truyền electron của hệ Graphene dạng góc vuông .............................. 50
  9. Hình 3.13: Sự ảnh hưởng của biến dạng cơ học lên tính chất truyền electron của hệ Graphene dạng góc 90 độ .............................................................................................. 51 Hình 3.14: Mô hình các kênh dẫn có cấu trúc dạng góc 90 độ gấp khúc .................... 52 Hình 3.15: Phổ truyền electron trong các kênh dẫn có cấu trúc dạng gấp khúc 90 độ 53 Hình 3.16: Mô phỏng các kênh dẫn với hệ ZGNRs dạng đục lỗ ................................. 54 Hình 3.17: Phổ truyền electron của hệ 8 – ZGNRs đục lỗ dạng hình tròn .................. 54 Hình 3.18: Phổ truyền electron của hệ 8 – ZGNRs đục lỗ dạng hình vuông ............... 55 Hình 3.19: Phổ truyền electron của hệ 8 – ZGNRs bị đục lỗ dạng hình tam giác ....... 56 Hình 3.20: Sự ảnh hưởng của biến dạng cơ học lên phổ truyền electron của hệ ZGNRs bị đục lỗ dạng hình tam giác ............................................................................ 57 Hình 3.21: Mô phỏng các kênh dẫn AGRNs có đục lỗ với kích thước tăng dần: (a) dạng lỗ tròn, (b) dạng lỗ vuông, và (c) dạng lỗ tam giác ........................................ 57 Hình 3.22: Phổ truyền electron của các kênh dẫn AGRNs có đục lỗ .......................... 58
  10. DANH MỤC CÁC THUẬT NGỮ VIẾT TẮT AGNRs: Armchair Graphene NanoRibbons DFT: Density functional theory DOS: Density of states FET: Field-effect transistor FIB: Focused ion beam GGA: Generalize gradient approximation GNRs: Graphene NanoRibbons H – F: Hartree - Fock ITO: Indium Tin Oxide LDA: Local density approximation LSDA: Local spin density approximation NEGF: Non-equilibrium Green function OLED: Organic Light-Emiting Diode OpenMX: Open source package for Material explorer SCF: Self Consitent Field XC: Exchange – Correlation ZGNRs: Zigzag Graphene NanoRibbons